23 research outputs found

    From design optimization systems to geometrical contradictions

    Get PDF
    AbstractWithin the framework of the Research Project PROSIT [1] aimed at the development of an integrated product design platform capable to link Computer-Aided Innovation (CAI) with PLM/EKM systems, the authors have approached the analysis of the contradictions emerging during the design embodiment phase. In this case, since the functional architecture of the product is already fixed, design conflicts arise due to contradictory geometrical requirements. Design Optimization systems can play a relevant role for the identification of these “geometrical contradictions”, even if with modified criteria of usage. The present paper first describes how Design Optimization can be adopted as a means to link CAI and PLM/EKM systems; then a detailed analysis of geometrical contradictions is reported together with the criteria proposed for their categorization. Finally, the discussion is focused on the adoption of the proposed classification of geometrical contradictions as a pointer to the most suitable inventive principles and geometrical effects to overcome the design conflicts

    Systematic design through the integration of TRIZ and optimization tools

    Get PDF
    AbstractMarketing strategies are focusing on innovation as the key for being competitive; as a consequence, product development processes must be improved in order to have a link as close as possible between conceptual design and detailed design activities. Within this context, TRIZ and TRIZ-based methodologies and tools are still poorly integrated with product embodiment means: CAD/CAE systems are not suited for supporting the designer in the conceptual design phase and at the same time inventive/separation principles, standard solutions etc. can hardly be translated into a modification of a CAD model and the only opportunity is to restart the modeling process.A small consortium of Italian Universities is analyzing the opportunity to use Design Optimization tools as a means for linking Computer-Aided Innovation (CAI) tools with Product Lifecycle Management (PLM) systems: www.kaemart.it/prosit. Among the specific objectives of the project, this paper describes how to analyze TRIZ technical contradictions by means of Design Optimization tools, with the aim of translating them into physical contradictions. The suggestions provided by inventive/separation principles are therefore converted into a new Design Optimization problem for the development of a novel solution
    corecore